
Image Analysis in Modern Ophthalmology: From Acquisition
to Computer Assisted Diagnosis and Telemedicine
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ABSTRACT

Medical digital imaging has become a key element of modern health care procedures. It provides visual docu-
mentation and a permanent record for the patients, and most important the ability to extract information about
many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing
power. In this work we present an overview of recent image processing techniques proposed by the authors in the
area of digital eye fundus photography. Our applications range from retinal image quality assessment to image
restoration via blind deconvolution and visualization of structural changes in time between patient visits. All
proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of
the information chain in telemedicine.
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1. INTRODUCTION

Ophthalmology is no longer a stand-alone branch of medicine conducted exclusively by specialists with the sole
purpose of providing medical aid for the visual health of the general population–it is much, much more than that.
As it is conceived today, ophthalmology is undisputedly an interdisciplinary field in both research and clinical
practice. A field that in the last decade has shown that digital information based systems can be both clinical
and cost effective with high levels of patient satisfaction.1 However, successful deployment is not without great
difficulty.

While ophthalmology per se involves a great number of sub-specialties and also an ever increasing number of
probing techniques, this work focuses on the main ocular fundus imaging modality: color fundus photography.
Fundus imaging or fundus photography is basically the process whereby a 2D-representation of the 3D-retinal
tissues projected onto the imaging plane is obtained using reflected light.2 In color fundus photography the
image intensities represent the amount of reflected red (R), green (G), and blue (B) wavebands, as determined
by the spectral sensitivity of the sensor. Fundus imaging plays a key role in the diagnosis and management of
ophthalmologic disorders, such as diabetic retinopathy, glaucoma, and age-related macular degeneration; all of
them being the most prevalent causes of blindness in the industrialized world.2

In this paper we provide a brief introduction to image analysis in modern ophthalmology that comprises a
general view of the field, the presentation of several examples of image analysis techniques, and perspectives on
future developments in the field.
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1.1 A link to the past

The eye fundus has been observed since 1850 with the invention of the ophthalmoscope by the German physician
Hermann Von Helmholtz.3 This was an instrument that enabled the examination of the retina by using a bright
light near the eye and shining it into the patient’s pupil. However, it was not until the mid 1920s that the Carl
Zeiss Company made available the first commercial fundus camera. Many were the limitations in clinical use of
fundus photography in the 1930s and 1940s which can be attributed to the difficulty in obtaining good quality
images.3 Significant progress was made in later decades and fundus photography became ubiquitous in the prac-
tice of ophthalmology providing a means for recording, storing, and indexing at low cost the images of a patient.
This opened many possibilities: specific patients could easily be recorded and catalogued, longitudinal changes
could be documented, and later retrieval of images could foster scientific research. Other important imaging
modalities appeared only to enhance diagnostic and observational capabilities in ophthalmology such as: fluores-
cent angiography, modern digital fundus photography, stereo fundus photography, confocal laser opthalmoscopy,
and optical coherence tomography. Out of all of these imaging modalities, however, it may be said that fundus
photography is the one that provides a more general fundus examination with relatively simple and affordable
equipment, and little patient intervention. Interestingly, it has been suggested that information extracted from
the eye fundus could be useful in a variety of diseases such as heart disorders, stroke, hypertension, peripheral
vascular disease and diabetic retinopathy.4

1.2 The new paradigm: computer-aided diagnosis and telemedicine

With the advances of computer technology, various types of computer-aided diagnosis (CAD) systems5,6 have
been developed in recent years. The main idea of CAD is to assist medical staff in interpreting medical images
by using dedicated computer systems to provide “second opinions”. The final medical decision is made by the
physicians. Studies on CAD systems show that it can help to improve diagnostic accuracy, lighten the burden
of increasing workload, reduce missed disease detection due to fatigue, overlooked data, and improve inter- and
intra-reader variability.5,7 Meanwhile a number of fundus image CAD systems have also been developed for
the diagnosis of various types of ocular diseases such as glaucoma,8 and diabetic retinopathy.9,10 These CAD
systems have the potential to provide an alternative solution to mass screening programs that need to examine
a vast number of fundus images as fast as possible. In a recent work by Sánchez et al.,10 they were able to
show that the performance of a CAD system for diabetic retinopathy screening could be comparable with that of
human experts. However, while this represents unprecedented performance for CAD systems it does not translate
readily to clinical practice. Furthermore, this should not be understood in the sense that CAD systems are to
replace specialists, instead they are to ensure that specialists spend more time dealing with the ill by serving the
purpose of screening. Nevertheless, further extensive and thorough evaluation is still needed before deployment
in clinical practice.

In other regards, CAD systems are also pivotal to the practice of telemedicine. Telemedicine is basically the
use of telecommunication and information technologies in order to provide clinical health care at a distance. Tra-
ditional examination of the retina requires dilated pupils, a skilled examiner, and a visit to the ophthalmologist,
typically in a separate location from the primary care center. Numerous studies in the United States have shown
that many diabetes patients fail to seek or receive this important examination on a regular basis.11 This shortfall
has been attributed to a variety of factors but mainly due to socioeconomic and health system barriers. These
problems can be overcome by incorporating retinopathy screening into primary care practices, using telemedicine
powered by CAD systems for the evaluation of retinal images. The screening process can be simpler and more
cost-efficient than sending the patients to the ophthalmologist’s office for a live evaluation. A successful and reli-
able telemedicine retinopathy screening system must be comparable to a live retinal examination in the detection
of vision-threatening retinopathy. There are a number of constraints so as to achieve an adequate sensitivity and
specificity, and to date there is no general consensus on how to approach them. Meanwhile, a promising strategy
rises from the use of license-free web-based software, standard interfaces, and flexible protocols to allow primary
care providers to adopt retinopathy screening with minimal effort and resources.11

2. PREPROCESSING OF RETINAL IMAGES

The main purpose of preprocessing techniques is to reduce the effect of image variation via normalization of
the retinal image against a reference model or data set for subsequent visualization, processing or analysis.
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Figure 1. Illumination compensation algorithm

Variations may occur within the same image or between images. The main differences between images are most
likely due to differences in cameras, illumination, field of view and retinal pigmentation. Thus, in order to extract
meaningful information from an image, it is necessary to compensate for this variability. General preprocessing
tasks for both monochromatic and color retinal images may be broadly categorized in terms of the correction for
non-uniform illumination, contrast enhancement and color normalization.12

Despite controlled conditions, many retinal images suffer from non-uniform illumination. The curved retinal
surface and the geometrical configuration of the light source and camera, lead to a poorly illuminated periphery.
This problem can be approached in a number of ways. There have been many works on this topic,12 however
they can be loosely classified into single image or multiple image compensation techniques. Several single image
techniques have been used to enhance retinal images. Histogram equalization has been shown to be inappropriate
for retinal images.13 A local normalization of each pixel to zero mean and unit variance aims to compensate
lighting variation and enhancing local contrast but also introduces artifacts.13 Histogram matching between the
red and green planes has been used as a preprocessing step for vessel segmentation.14 This improves the contrast
of gross dark features like vessels but reduces the contrast of bright objects and tiny dark objects like micro-
aneurysms. While most of the aforementioned methods are motivated by automatic analysis, as a preprocessing
stage, they are all formulated for a single color plane or for gray-scale images. Color retinal image enhancement
is required for human visual inspection or for the application of vector processing techniques.

An example of a single image illumination compensation algorithm is depicted in Fig. 1. This algorithm was
described in Ref. 15 and is based on a simple model of degradation proposed by Foracchia et al.16 The main
idea is that the image can be enhanced by estimating the background luminosity and contrast distribution in
order to compensate for uneven illumination. Therefore, the enhanced image U(x, y) is expressed as:

U(x, y) =
I(x, y)− L(x, y)

C(x, y)
, (1)

where I is the original degraded image, C and L are the contrast and luminosity drifts, respectively. C and
L can also be understood in terms of gain and offset. They have to be estimated by sampling the original
image. This is achieved by using a non-uniform sampling grid as shown in Fig. 1. The sampling is coarse in the
central region and dense in the periphery. This is carried out on the green channel of the RGB retinal image
because is the channel with highest contrast. The background pixels are estimated by a procedure described in
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Figure 2. Illumination compensation for two retinal images (a) and (b). (c) Compensation function k.

Ref. 15. From these pixels the background luminosity and contrast components are computed to produce the
image enhancement given by Eq. (1). The final color enhanced retinal image is obtained by performing a color
remapping on the gray-scale image that preserves the RGB ratios, however it may introduce color modifications.

Multiple image illumination compensation techniques are mainly motivated by the need for a processing
strategy that requires two or more images, e.g. image comparison or change detection,17 multichannel deconvo-
lution,18 sequential multispectral imaging,19 etc. In Ref. 20 we described such a technique for compensating the
uneven illumination distribution from two images of the same retina acquired at different moments for further
processing. The basic idea is a follows: the illumination distribution can be compensated by adjusting the inten-
sity values on one image to approximately match that of the other while satisfying a predetermined illumination
model. Because the illumination of the retina is formed by a slowly varying light field over a smooth surface it
can be modeled by a low-order parametric surface, in this case a 4th-order polynomial. The compensation is
then formulated via a parametric surface fitting equation

arg min
k
‖I1(x, y)− k(x, y) · I2(x, y)‖ , (2)

where I1 and I2 are the two retinal images, k is the illumination compensation function given by k(x, y) =
α15y

4 + α14y
3x+ · · ·+ α2y + α1. Eq. (2) is minimized in the least squares sense to estimate the 15 parameters.

In Fig. 2 we show an example of two retinal images and the compensation function k(x, y). The different shades
of gray indicate the average contrast and intensity difference between the two original images in Figs. 2(a) and
(b).

3. DETECTION OF LONGITUDINAL CHANGES IN RETINAL IMAGES

One of the main concerns of ophthalmologists when they visually compare fundus images of the same retina
over time is to identify true structural or morphological changes pertaining to possible pathological damage.
In the same inspection they must disregard other changes merely caused by variation of illumination or blur.
A correct assessment of a patient’s state evolution requires sharp images obtained on a regular time basis.
However, this is not always guaranteed and is the main motivation for developing preprocessing techniques as
the ones described in the previous section. Image registration is another preprocessing technique necessary for
image-based longitudinal change assessment.12

In this section we briefly describe a strategy for the identification of areas of structural change in time
sequences of retinal images.20 An initial step in order to identify these changes comes from computing the
difference from the two registered images with previous illumination compensation,

∆I(x, y) = I1(x, y)− I2(x, y) . (3)

An example of a difference image is shown in Fig. 3(c) in absolute value for visualization purposes. The
structural changes can now be visualized and detected from the difference image ∆I(x, y) by taking a statistical
significance test, as proposed in Ref. 17. First, structural changes are often associated with a group of pixels,
thus the change decision at a given pixel j should be based on a small block of pixels in the neighborhood
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Figure 3. Retinal image change detection: Images (a) I1 and (b) I2, (c) Image difference ∆I(x, y) in absolute value,
(d) Image change map, and (d) Image change map in red on top of gray-scale retinal image.

of j denoted as wj . Second, in the absence of any change, the difference can be assumed to be due to noise
alone. Therefore, the decision as to whether or not a change has occurred corresponds to choosing one of two
competing hypothesis: the null hypothesis H0 or the alternative hypothesis H1, corresponding to no-change
and change decisions, respectively. Assuming a Gaussian distribution for the difference values, the changes
can be identified by comparing the normalized sum square of the differences within the neighborhood wj to a
predetermined threshold τ as described by Aach et al.21 The test is carried out as below

Ωj =
1

σ2
n

∑
(x,y)∈wj

∆I(x, y)2
H1

≷
H0

τ , (4)

where σn is the noise standard deviation of the difference in the no-change regions. The threshold τ is derived
from the fact that Ωj follows a χ2 distribution with N degrees of freedom, where N is the number of pixels in the
window wj . It can be obtained for a particular false positive rate α from the χ2 tables. The image change map
resulting from the change detection test with an α = 0.05 is shown in Fig 3(d). Notice that the central whitish
region (pathological area) is the main cause of structural changes. To better understand this result, in Fig. 3(e)
we show one of the retinal images in gray-scale where the pixels related to structural changes are highlighted in
red. For further details the reader is referred to Ref. 20.

4. RETINAL IMAGE RESTORATION

In addition to uneven illumination fundus images often suffer from blurring. This hinders diagnosis and the
evolution assessment of a disease. In this section we describe a method for fundus image deblurring by means
of multichannel blind deconvolution. It consists of a series of preprocessing steps to adjust the images so they
comply with the considered degradation model, followed by the estimation of the point spread function, and
image deconvolution.

Blind deconvolution consists in the recovery of the original scene from a single or set of blurred images in
the presence of a poorly determined or unknown point spread function (PSF).22 Here we consider multichannel
blind deconvolution because it is better posed, as opposed to single-channel, and the PSF is estimated directly



from the degraded images. The restoration strategy is given in Ref. 20. As a regularization term it includes
the total variation of the image, which provides good quality of restoration. To properly restore the images the
degradation should be adequately modeled.

We assume two registered input images, I1 and I2, both originating from an ideal sharp image U

I1 = U ∗ h1 + n1

I2 =
(
Uk−1

)
∗ h2 + n2 , (5)

where ∗ is the standard convolution, hi are called convolution kernels or PSFs and k is a function accounting for
relative local illumination change between images. For pixels where no illumination changes occur k ≈ 1. The
noise ni is assumed Gaussian additive with zero mean in both images. Despite the fact that we consider the
PSFs to vary in time between the two image acquisitions, we assume them to be spatially invariant within each
image.

The PSF estimation and image deconvolution algorithm can be viewed as a Bayesian maximum a posteriori
estimation of the most probable sharp image and blur kernels. The algorithm is basically the minimization of
the functional

arg min
U,h1,h2

1

2
||U ∗ h1 − I1||2 +

1

2
||U ∗ h2 − kI2||2 + λu

∫
|∇U |+ λh||I1 ∗ h2 − kI2 ∗ h1||2, (6)

h1, h2 ≥ 0 ,

with respect to the latent image U and blur kernels h1 and h2. The first and second terms measure the difference
between the input blurred images and the searched image U blurred by kernels h1 and h2. The size of this
difference is measured by L2 norm ||.|| and should be small for the correct solution. Ideally, it should correspond
to the noise variance in the given image. Function k compensates for uneven illumination. The two remaining
terms are regularization terms with positive weighting constants λu and λh. The third term is the total variation
of U . It improves stability of the minimization and from the statistical viewpoint incorporates prior knowledge
about the solution. The last term is a condition linking the PSFs of both images, which also improves the
numerical stability of the minimization. For this procedure we set λu = 1000 and λh = 10. The functional is
alternately minimized in the subspaces corresponding to the image and the PSFs. The minimization in the PSF
subspace is equivalent to the solution of a system of linear equations in the least squares sense with the non-
negativity constraint. In the same minimization procedure both the PSFs and the restored image are estimated.
If I1 and I2 were acquired in a lapse of time, it would be necessary to introduce the structural change detection
strategy (Section 3) in both the model of Eq. (5) and the functional given by Eq. (6) (Ref. 20).

An example of a restored retinal image is shown in Fig. 4. In this example the PSF was estimated by Eq. (6),
but we have performed deconvolution (restoration) with a single image and with both images to demonstrate the
advantages of using multiple images in the restoration as well. From the profile of the original image not much
detail can be properly resolved. In contrast there is a noticeable enhancement in both restored images in such
a way that much more details are properly resolved. The multichannel deconvolution overcomes the limitations
of single-channel deconvolution due to information redundancy. The improvement in resolution is evidenced
by gain in contrast and steeper slopes. Notice the small c-shaped blood vessel within the optic disc, and how
they are much sharper and properly resolved in the multichannel restoration in Fig. 4 in comparison with the
single-channel restoration and the original images. For a detailed examination of this topic see Refs. 18,20.

5. RETINAL IMAGE QUALITY ASSESSMENT

Image quality evaluation is a limiting factor for automated retinopathy detection.2 The imaging procedure is
typically carried out in two separate stages: image acquisition and diagnostic interpretation. Image quality is
subjectively evaluated by the person capturing the images and they can sometimes mistakenly accept a low quality
image. Accurate image quality assessment algorithms can allow operators to avoid poor images. Furthermore, a
quality metric would permit the automatic submission of only the best images if many were available.

In this section we provide a short description of the work contained in Ref. 23, where we studied the per-
formance of several state-of-the-art no-reference image quality metrics for retinal imaging. Two examples are



Figure 4. (Top, from left to right) Detail from the original degraded retinal image, the restored version using single-channel
deconvolution, and multi-channel deconvolution. (Bottom) Intensity profiles corresponding to the dashed segment. Note
how the profiles depict the level of detail in each image.

their application for image quality sorting or image sharpness assessment for focusing. In fact, most no-reference
quality assessment methods were initially proposed in the context of focusing applications.24 The most interest-
ing finding relates to the importance of directional properties with image quality. In other words, the measure
of anisotropy as a quality metric. This concept of anisotropy was proposed by two co-authors of this paper
(Gabarda and Cristóbal) in Ref. 25 and it represents an important step forward in the area of no-reference
quality metrics.

The considered image quality metrics are the following. The first metric Q1 was proposed by Gabarda and
Cristóbal25 and is based on measuring the variance of the expected entropy of a given image upon a set of
predefined directions. The entropy is computed on a local basis using the generalized Rényi entropy and the
normalized pseudo-Wigner distribution as an approximation for the probability density function. The authors
were able to show that this measure provides a good estimate for the assessment of fidelity and quality in natural
images, because their degradations may be seen as a decrease in their directional properties. The second metric
Q2 was proposed by Zhu and Milanfar26 and it seeks to provide a quantitative measure of –what they call– “true
image content”. It is correlated with the noise level, sharpness, and intensity contrast manifested in visually
salient geometric features such as edges. Q2 is based upon singular value decomposition of local image gradient
matrix. Its value generally drops if the variance of noise rises, and/or if the image content becomes blurry. To
avoid regions without edges this algorithm divides the image into small patches and only processes anisotropic
ones (non-homogeneous), thus local information is embedded into the final result. The third metric Q3 was
proposed by Ferzli and Karam.24 It is a sharpness metric designed to be able to predict the relative amount of
blurriness in images regardless of their content. Q3 is conceived on the notion that the human visual system is
able to mask blurriness around an edge up to a certain threshold, called the“just noticeable blur” (JNB). It is an
edge-based sharpness metric based on a human visual system model that makes use of probability summation
over space. JNB can be defined as the minimum amount of perceived blurriness given a contrast higher than
the “Just Noticeable Difference”. Finally, for the sake of completeness we include the image variance as metric
Q4. This measure has been proven to be monotonic and has a straight-forward relation with image quality for
autoregulative illumination intensity algorithms.27

In Figs. 5(a)-(b) we show an example of a sharp retinal image and a close-up region for depicting the details of
the image. The idea behind this experiment is to determine which quality metric describes better the decreasing
image quality. The sharp image was artificially blurred with a 15× 15 Gaussian kernel with a varying standard
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Figure 5. (a) Original sharp retinal image and (b) detail. (c)-(d) details from artificially blurred images with σ = 1.5 and
σ = 3, respectively. (e)-(f) detail from images with different degrees of focus 3 and 6, respectively (See Fig. 6).
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Figure 6. No-reference metrics for assessing image sharpness in relative value. (a) Fundus image artificially blurred with
a 15 × 15 gaussian kernel with varying σ. (b) Fundus images corresponding to the same eye in (a) but with different
degrees of fine focus acquired with the retinal camera.

deviation σ. Figs. 5(c)-(d) show the close-up region for the blurred images with σ = 1.5 and σ = 3, respectively.
The increase in blurriness hinders the resolution of fine structures, hence the medical use is affected as well. In
Figs. 5(e)-(f) we show the experimental close-up regions from degraded out of focus images acquired from the
same eye fundus.

In Fig. 6(a) we show the resulting quality metrics for the artificial blurring. The figure clearly reveals the
overall monotonic nature of all metrics, however Q1 is the only metric that rapidly decreases with respect to
increase in blurriness. The results from the experimental images are shown in Fig. 6(b). Notice how Q1 also
behaves in a consistent way with respect to the deviation from optimal focus. The other metrics seem to be
reliable for a considerable amount of blurriness. One possible explanation for the discrepancy between the
artificial and real blur for the metrics Q2−4 is that the overall illumination distribution cannot be exactly the
same, moreover it is also non-uniform. If the metric is not conceived for variations in illumination –even if they
were small– it is prone to produce an unreliable result, whereas in Q1 the intensity normalization provides a
certain level of robustness to this type of variation.

In Ref. 23 these experiments led us to conclude that, even though all metrics proved to decrease with the
increase in blurriness, strict monotonic decrease was only appreciable for Q1. This lends strong support for the
design of image sharpness metrics based on a directional measure of image content.



6. CONCLUSIONS AND PERSPECTIVES

As we have seen the application of digital image processing techniques for medical image analysis, in this case
retinal images, is not only extremely beneficial but can also prove to be effective and cost-efficient for disease
management, diagnosis, screening, etc. The increasing need for early detection and screening, along with the
ever increasing costs of health care, are likely to be the driving force for the rapid adoption and translation
of research findings into clinical practice. The direction of progress, in the short and mid term in this field, is
generally conceived within two scenarios: 1) when the amount of data to be analyzed by the medical specialist
is excessively large and 2) when the analysis is complex and requires quantification, as opposed to the more
qualitative nature of the human expert.
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